
1

03. December, 2021

Disclaimer	 3

Description	 5

Project Engagement	 5

Logo	 5

Contract Link	 5

Methodology	 7

Used Code from other Frameworks/Smart Contracts (direct imports)	 8

Tested Contract Files	 9

Source Lines	 10

Risk Level	 10

Capabilities	 11

Scope of Work	 13

Inheritance Graph	 13

Verify Claims	 14

Write functions of contract	 14

Modifiers	 18

CallGraph	 19

Source Units in Scope	 20

Critical issues	 21

High issues	 21

Medium issues	 21

Low issues	 21

Informational issues	 21

Audit Comments	 22

SWC Attacks	 23

2

Disclaimer

SolidProof.io reports are not, nor should be considered, an “endorsement”
or “disapproval” of any particular project or team. These reports are not,
nor should be considered, an indication of the economics or value of any
“product” or “asset” created by any team. SolidProof.io do not cover
testing or auditing the integration with external contract or services (such
as Unicrypt, Uniswap, PancakeSwap etc’...)

SolidProof.io Audits do not provide any warranty or guarantee
regarding the absolute bug- free nature of the technology analyzed,
nor do they provide any indication of the technology proprietors.
SolidProof Audits should not be used in any way to make decisions
around investment or involvement with any particular project. These
reports in no way provide investment advice, nor should be leveraged
as investment advice of any sort.

SolidProof.io Reports represent an extensive auditing process intending
to help our customers increase the quality of their code while reducing
the high level of risk presented by cryptographic tokens and blockchain
technology. Blockchain technology and cryptographic assets present a
high level of ongoing risk. SolidProof’s position is that each company and
individual are responsible for their own due diligence and continuous
security. SolidProof in no way claims any guarantee of security or
functionality of the technology we agree to analyze.

Version Date Description

1.0 03. December 2021 • Layout project

• Automated- /Manual-Security

Testing

• Summary

3

http://SolidProof.io

Network

Binance Smart Chain (BEP20)

Website

https://liquidus.finance/

Telegram

https://t.me/liquidusfinance

Twitter

https://twitter.com/LiquidusFinance

Medium

https://medium.com/@liquidus

4

https://liquidus.finance/
https://t.me/liquidusfinance
https://twitter.com/LiquidusFinance
https://medium.com/@liquidus

Description

Liquidus makes staking your crypto assets a walk in the park. No more
switching pages, no more manual calculating. Just a simple interface
offering the best pools to join with as little as one click.

Project Engagement

During the 29th of November 2021, Liquidus Team engaged Solidproof.io
to audit smart contracts that they created. The engagement was
technical in nature and focused on identifying security flaws in the design
and implementation of the contracts. They provided Solidproof.io with
access to their code repository and whitepaper.

Logo

Contract Link

v1.0
TBA

5

Vulnerability & Risk Level
Risk represents the probability that a certain source-threat will exploit
vulnerability, and the impact of that event on the organization or system.
Risk Level is computed based on CVSS version 3.0.

Level Value Vulnerability Risk (Required Action)

Critical 9 - 10

A vulnerability that
can disrupt the
contract functioning
in a number of
scenarios, or creates a
risk that the contract
may be broken.

Immediate action to
reduce risk level.

High 7 – 8.9

A vulnerability that
affects the desired
outcome when using
a contract, or provides
the opportunity to
use a contract in an
unintended way.

Implementation of
corrective actions as

soon aspossible.

Medium 4 – 6.9

A vulnerability that
could affect the
desired outcome of
executing the
contract in a specific
scenario.

Implementation of
corrective actions in a

certain period.

Low 2 – 3.9

A vulnerability that
does not have a
significant impact on
possible scenarios for
the use of the
contract and is
probably subjective.

Implementation of
certain corrective

actions or accepting
the risk.

Informational 0 – 1.9

A vulnerability that
have informational
character but is not
effecting any of the
code.

An observation that
does not determine a

level of risk

6

Auditing Strategy and Techniques
Applied
Throughout the review process, care was taken to evaluate the repository
for security-related issues, code quality, and adherence to specification
and best practices. To do so, reviewed line-by-line by our team of expert
pentesters and smart contract developers, documenting any issues as
there were discovered.

Methodology

The auditing process follows a routine series of steps:

1. Code review that includes the following:

i) Review of the specifications, sources, and instructions provided to SolidProof
to make sure we understand the size, scope, and functionality of the smart
contract.

ii) Manual review of code, which is the process of reading source code line-by-
line in an attempt to identify potential vulnerabilities.

iii) Comparison to specification, which is the process of checking whether the
code does what the specifications, sources, and instructions provided to
SolidProof describe.

2. Testing and automated analysis that includes the following:

i) Test coverage analysis, which is the process of determining whether the test

cases are actually covering the code and how much code is exercised when
we run those test cases.

ii) Symbolic execution, which is analysing a program to determine what inputs
causes each part of a program to execute.

3. Best practices review, which is a review of the smart contracts to improve efficiency,
effectiveness, clarify, maintainability, security, and control based on the established
industry and academic practices, recommendations, and research.

4. Specific, itemized, actionable recommendations to help you take steps to secure
your smart contracts.

7

Used Code from other Frameworks/Smart
Contracts (direct imports)

Imported packages:

NFTStaking

NFTContract

8

Tested Contract Files

This audit covered the following files listed below with a SHA-1 Hash.

A file with a different Hash has been modified, intentionally or otherwise,
after the security review. A different Hash could be (but not necessarily)
an indication of a changed condition or potential vulnerability that was
not within the scope of this review.

v1.0

9

Metrics
Source Lines

v1.0

Risk Level

v1.0

10

Capabilities

Components

Exposed Functions

This section lists functions that are explicitly declared public or payable.
Please note that getter methods for public stateVars are not included.

State Variables

Capabilities

Version Contracts Libraries Interfaces Abstract

1.0 3 7 10 7

Version Public Payable

1.0 86 1

Version External Internal Private Pure View

1.0 48 169 9 36 58

Version Total Public

1.0 35 13

Version
Solidity
Versions
observed

Experim
ental
Features

 Can
Receive
Funds

Uses
Assembl
y

Has
Destroya
ble
Contract
s

1.0
^0.8.0 ABIEnco

derV2 yes
yes  
(5 asm
blocks)

11

Version
Transf
ers
ETH

Low-
Level
Calls

Delega
teCall

Uses
Hash
Functi
ons

ECRec
over

New/
Create/
Create
2

1.0 yes yes

12

Scope of Work

The above token Team provided us with the files that needs to be tested
(Github, Bscscan, Etherscan, files, etc.). The scope of the audit is the main
contract (usual the same name as team appended with .sol).

We will verify the following claims:

1. Deployer cannot burn or lock user funds

2. Deployer cannot pause the contract

Inheritance Graph

v1.0

13

Verify Claims

Write functions of contract

NFTStaking	 	 	 NFTContract

14

Deployer cannot burn or lock user funds

Name Exist Tested Verified

Deployer cannot
lock ✓ ✓ ✓

Deployer cannot
burn ✓ ✓ ✓

15

Deployer cannot pause the contract

Name Exist Tested Verified

Deployer cannot
pause ✓ ✓ ✓

16

Overall checkup (Smart Contract Security)

Legend

Tested Verified

✓ ✓

Attribute Symbol

Verfified / Checked ✓
Partly Verified ⚑

Unverified / Not checked ✘

Not available -

17

Modifiers

NFTStaking

• onlyOwner

• setAnnualRewardPerNft

• depositReward

• withdrawReward

• updateVestingTime

• initializer

• initialize

NFTContract

• onlyOwner

• setBaseURI

• setNewOrUpdateNftType

• toggleSaleState

• withdraw

Comments:

• updateVestingTime

• Deployer can set vestingTime without any limitations

• toggleSaleState

• Deployer can toggle saleActive state variable, addresses are not
allowed to mint anymore if saleActive is false

18

CallGraph

19

Source Units in Scope

v1.0

Legend

Attribute Description

Lines total lines of the source unit

nLines normalized lines of the source unit (e.g. normalizes functions
spanning multiple lines)

nSLOC normalized source lines of code (only source-code lines; no
comments, no blank lines)

Comment Lines lines containing single or block comments

Complexity Score
a custom complexity score derived from code statements that
are known to introduce code complexity (branches, loops, calls,
external interfaces, ...)

20

Audit Results

Critical issues

- no critical issues found -

High issues

- no high issues found -

Medium issues

- no medium issues found -

Low issues

Informational issues

Issue File Type Line Description

#1 All Contract doesn’t
import npm packages
from source (like
OpenZeppelin etc.)

- We recommend to import all
packages from npm directly
without flatten the contract.
Functions could be modified
or can be susceptible to
vulnerabilities

#2 NFTCon
tract

A floating pragma is set 3 The current pragma Solidity
directive is „“^0.8.0””.

#3 NFTSta
king

A floating pragma is set 1 The current pragma Solidity
directive is „“^0.8.0””.

Issue File Type Line Description

21

AUDIT PASSED

Audit Comments

02. December 2021:

• _baseTokenURI is a placeholder in line 1197

• Deployer can set vestingTime without any limitations with

updateVestingTime function

• Deployer can toggle saleActive state variable, addresses are not

allowed to mint anymore if saleActive is false with toggleSaleState
function

#1 NFTCon
tract

Unimplemented
functions

- • IERC721.approve(address,
uint256)
(NFTStaking.sol#1223)

• IERC721.balanceOf(addres
s) (NFTStaking.sol#1159)

• IERC721.getApproved(uint
256)
(NFTStaking.sol#1232)

• IERC721.isApprovedForAll(
address,address)
(NFTStaking.sol#1251)

• IERC721.ownerOf(uint256)
(NFTStaking.sol#1168)

• IERC721.safeTransferFrom(
address,address,uint256)
(NFTStaking.sol#1184-1188
)

• IERC721.safeTransferFrom(
address,address,uint256,b
ytes)
(NFTStaking.sol#1266-1271
)

• IERC721.setApprovalForAll
(address,bool)
(NFTStaking.sol#1244)

• IERC165.supportsInterface
(bytes4)
(NFTStaking.sol#1132)

• IERC721.transferFrom(add
ress,address,uint256)
(NFTStaking.sol#1204-120
8)

22

SWC Attacks

ID Title Relationships Status

SW
C-13
6

Unencrypted
Private Data
On-Chain

CWE-767: Access to Critical
Private Variable via Public
Method

PASSED

SW
C-13
5

Code With No
Effects

CWE-1164: Irrelevant Code PASSED

SW
C-13
4

Message call
with
hardcoded gas
amount

CWE-655: Improper
Initialization PASSED

SW
C-13
3

Hash Collisions
With Multiple
Variable
Length
Arguments

CWE-294: Authentication
Bypass by Capture-replay PASSED

SW
C-13
2

Unexpected
Ether balance

CWE-667: Improper Locking PASSED

SW
C-13
1

Presence of
unused
variables

CWE-1164: Irrelevant Code PASSED

SW
C-13
0

Right-To-Left-
Override
control
character
(U+202E)

CWE-451: User Interface (UI)
Misrepresentation of Critical
Information

PASSED

SW
C-12
9

Typographical
Error

CWE-480: Use of Incorrect
Operator PASSED

SW
C-12
8

DoS With Block
Gas Limit

CWE-400: Uncontrolled
Resource Consumption PASSED

23

https://swcregistry.io/docs/SWC-136
https://cwe.mitre.org/data/definitions/767.html
https://swcregistry.io/docs/SWC-135
https://cwe.mitre.org/data/definitions/1164.html
https://swcregistry.io/docs/SWC-134
https://cwe.mitre.org/data/definitions/665.html
https://swcregistry.io/docs/SWC-133
https://cwe.mitre.org/data/definitions/294.html
https://swcregistry.io/docs/SWC-132
https://cwe.mitre.org/data/definitions/667.html
https://smartcontractsecurity.github.io/SWC-registry/docs/SWC-131
https://cwe.mitre.org/data/definitions/1164.html
https://smartcontractsecurity.github.io/SWC-registry/docs/SWC-130
http://cwe.mitre.org/data/definitions/451.html
https://smartcontractsecurity.github.io/SWC-registry/docs/SWC-129
https://cwe.mitre.org/data/definitions/480.html
https://smartcontractsecurity.github.io/SWC-registry/docs/SWC-128
https://cwe.mitre.org/data/definitions/400.html

SW
C-12
7

Arbitrary Jump
with Function
Type Variable

CWE-695: Use of Low-Level
Functionality PASSED

SW
C-12
5

Incorrect
Inheritance
Order

CWE-696: Incorrect Behavior
Order PASSED

SW
C-12
4

Write to
Arbitrary
Storage
Location

CWE-123: Write-what-where
Condition PASSED

SW
C-12
3

Requirement
Violation

CWE-573: Improper Following
of Specification by Caller PASSED

SW
C-12
2

Lack of Proper
Signature
Verification

CWE-345: Insufficient
Verification of Data
Authenticity

PASSED

SW
C-12
1

Missing
Protection
against
Signature
Replay Attacks

CWE-347: Improper Verification
of Cryptographic Signature PASSED

SW
C-12
0

Weak Sources
of Randomness
from Chain
Attributes

CWE-330: Use of Insufficiently
Random Values PASSED

SW
C-11
9

Shadowing
State Variables

CWE-710: Improper Adherence
to Coding Standards PASSED

SW
C-11
8

Incorrect
Constructor
Name

CWE-665: Improper
Initialization PASSED

SW
C-11
7

Signature
Malleability

CWE-347: Improper Verification
of Cryptographic Signature PASSED

24

https://smartcontractsecurity.github.io/SWC-registry/docs/SWC-127
https://cwe.mitre.org/data/definitions/695.html
https://smartcontractsecurity.github.io/SWC-registry/docs/SWC-125
https://cwe.mitre.org/data/definitions/696.html
https://smartcontractsecurity.github.io/SWC-registry/docs/SWC-124
https://cwe.mitre.org/data/definitions/123.html
https://smartcontractsecurity.github.io/SWC-registry/docs/SWC-123
https://cwe.mitre.org/data/definitions/573.html
https://smartcontractsecurity.github.io/SWC-registry/docs/SWC-122
https://cwe.mitre.org/data/definitions/345.html
https://smartcontractsecurity.github.io/SWC-registry/docs/SWC-121
https://cwe.mitre.org/data/definitions/347.html
https://smartcontractsecurity.github.io/SWC-registry/docs/SWC-120
https://cwe.mitre.org/data/definitions/330.html
https://smartcontractsecurity.github.io/SWC-registry/docs/SWC-119
http://cwe.mitre.org/data/definitions/710.html
https://smartcontractsecurity.github.io/SWC-registry/docs/SWC-118
http://cwe.mitre.org/data/definitions/665.html
https://smartcontractsecurity.github.io/SWC-registry/docs/SWC-117
https://cwe.mitre.org/data/definitions/347.html

SW
C-11
6

Timestamp
Dependence

CWE-829: Inclusion of
Functionality from Untrusted
Control Sphere

PASSED

SW
C-11
5

Authorization
through
tx.origin

CWE-477: Use of Obsolete
Function PASSED

SW
C-11
4

Transaction
Order
Dependence

CWE-362: Concurrent
Execution using Shared
Resource with Improper
Synchronization ('Race
Condition')

PASSED

SW
C-11
3

DoS with Failed
Call

CWE-703: Improper Check or
Handling of Exceptional
Conditions

PASSED

SW
C-11
2

Delegatecall to
Untrusted
Callee

CWE-829: Inclusion of
Functionality from Untrusted
Control Sphere

PASSED

SW
C-111

Use of
Deprecated
Solidity
Functions

CWE-477: Use of Obsolete
Function PASSED

SW
C-11
0

Assert Violation
CWE-670: Always-Incorrect
Control Flow Implementation PASSED

SW
C-10
9

Uninitialized
Storage Pointer

CWE-824: Access of
Uninitialized Pointer PASSED

SW
C-10
8

State Variable
Default
Visibility

CWE-710: Improper Adherence
to Coding Standards PASSED

SW
C-10
7

Reentrancy
CWE-841: Improper
Enforcement of Behavioral
Workflow

PASSED

SW
C-10
6

Unprotected
SELFDESTRUC
T Instruction

CWE-284: Improper Access
Control PASSED

25

https://smartcontractsecurity.github.io/SWC-registry/docs/SWC-116
https://cwe.mitre.org/data/definitions/829.html
https://smartcontractsecurity.github.io/SWC-registry/docs/SWC-115
https://cwe.mitre.org/data/definitions/477.html
https://smartcontractsecurity.github.io/SWC-registry/docs/SWC-114
https://cwe.mitre.org/data/definitions/362.html
https://smartcontractsecurity.github.io/SWC-registry/docs/SWC-113
https://cwe.mitre.org/data/definitions/703.html
https://smartcontractsecurity.github.io/SWC-registry/docs/SWC-112
https://cwe.mitre.org/data/definitions/829.html
https://smartcontractsecurity.github.io/SWC-registry/docs/SWC-111
https://cwe.mitre.org/data/definitions/477.html
https://smartcontractsecurity.github.io/SWC-registry/docs/SWC-110
https://cwe.mitre.org/data/definitions/670.html
https://smartcontractsecurity.github.io/SWC-registry/docs/SWC-109
https://cwe.mitre.org/data/definitions/824.html
https://smartcontractsecurity.github.io/SWC-registry/docs/SWC-108
https://cwe.mitre.org/data/definitions/710.html
https://smartcontractsecurity.github.io/SWC-registry/docs/SWC-107
https://cwe.mitre.org/data/definitions/841.html
https://smartcontractsecurity.github.io/SWC-registry/docs/SWC-106
https://cwe.mitre.org/data/definitions/284.html

SW
C-10
5

Unprotected
Ether
Withdrawal

CWE-284: Improper Access
Control PASSED

SW
C-10
4

Unchecked Call
Return Value

CWE-252: Unchecked Return
Value PASSED

SW
C-10
3

Floating
Pragma

CWE-664: Improper Control of
a Resource Through its
Lifetime

NOT
PASSED

SW
C-10
2

Outdated
Compiler
Version

CWE-937: Using Components
with Known Vulnerabilities PASSED

SW
C-10
1

Integer
Overflow and
Underflow

CWE-682: Incorrect Calculation PASSED

SW
C-10
0

Function
Default
Visibility

CWE-710: Improper Adherence
to Coding Standards PASSED

26

https://smartcontractsecurity.github.io/SWC-registry/docs/SWC-105
https://cwe.mitre.org/data/definitions/284.html
https://smartcontractsecurity.github.io/SWC-registry/docs/SWC-104
https://cwe.mitre.org/data/definitions/252.html
https://smartcontractsecurity.github.io/SWC-registry/docs/SWC-103
https://cwe.mitre.org/data/definitions/664.html
https://smartcontractsecurity.github.io/SWC-registry/docs/SWC-102
http://cwe.mitre.org/data/definitions/937.html
https://smartcontractsecurity.github.io/SWC-registry/docs/SWC-101
https://cwe.mitre.org/data/definitions/682.html
https://smartcontractsecurity.github.io/SWC-registry/docs/SWC-100
https://cwe.mitre.org/data/definitions/710.html

27

	Disclaimer
	Description
	Project Engagement
	Logo
	Contract Link
	Methodology
	Used Code from other Frameworks/Smart Contracts (direct imports)
	Tested Contract Files
	Source Lines
	Risk Level
	Capabilities
	Scope of Work
	Inheritance Graph
	Verify Claims
	Write functions of contract
	Modifiers
	CallGraph
	Source Units in Scope
	Critical issues
	High issues
	Medium issues
	Low issues
	Informational issues
	Audit Comments
	SWC Attacks

